ON THE SCALING LIMITS OF PLANAR PERCOLATION

成果类型:
Article
署名作者:
Schramm, Oded; Smirnov, Stanislav; Garban, Christophe
署名单位:
University of Geneva; Ecole Normale Superieure de Lyon (ENS de LYON); Centre National de la Recherche Scientifique (CNRS)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/11-AOP659
发表日期:
2011
页码:
1768-1814
关键词:
conformal-invariance bond percolation trees
摘要:
We prove Tsirelson's conjecture that any scaling limit of the critical planar percolation is a black noise. Our theorems apply to a number of percolation models, including site percolation on the triangular grid and any subsequential scaling limit of bond percolation on the square grid. We also suggest a natural construction for the scaling limit of planar percolation, and more generally of any discrete planar model describing connectivity properties.