SHARP THRESHOLD FOR PERCOLATION ON EXPANDERS

成果类型:
Article
署名作者:
Benjamini, Itai; Boucheron, Stephane; Lugosi, Gabor; Rossignol, Raphael
署名单位:
Weizmann Institute of Science; Pompeu Fabra University; ICREA; Pompeu Fabra University; Sorbonne Universite; Universite Paris Cite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Saclay
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/10-AOP610
发表日期:
2012
页码:
130-145
关键词:
isoperimetric-inequalities variance graphs
摘要:
We study the appearance of the giant component in random subgraphs of a given large finite graph G = (V, E) in which each edge is present independently with probability p. We show that if G is an expander with vertices of bounded degree, then for any c is an element of ]0, 1[, the property that the random sub-graph contains a giant component of size c vertical bar V vertical bar has a sharp threshold.