MIXING OF THE SYMMETRIC EXCLUSION PROCESSES IN TERMS OF THE CORRESPONDING SINGLE-PARTICLE RANDOM WALK
成果类型:
Article
署名作者:
Oliveira, Roberto Imbuzeiro
署名单位:
Instituto Nacional de Matematica Pura e Aplicada (IMPA)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/11-AOP714
发表日期:
2013
页码:
871-913
关键词:
logarithmic sobolev inequality
spectral gap
time
percolation
cluster
bounds
摘要:
We prove an upper bound for the epsilon-mixing time of the symmetric exclusion process on any graph G, with any feasible number of particles. Our estimate is proportional to T-RW(G) ln(vertical bar V vertical bar/epsilon), where vertical bar V vertical bar is the number of vertices in G, and T-RW(G) is the 1/4-mixing time of the corresponding single-particle random walk. This bound implies new results for symmetric exclusion on expanders, percolation clusters, the giant component of the Erdos-Renyi random graph and Poisson point processes in R-d. Our technical tools include a variant of Morris's chameleon process.