POISSON APPROXIMATIONS ON THE FREE WIGNER CHAOS

成果类型:
Article
署名作者:
Nourdin, Ivan; Peccati, Giovanni
署名单位:
Universite de Lorraine
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/12-AOP815
发表日期:
2013
页码:
2709-2723
关键词:
convergence
摘要:
We prove that an adequately resealed sequence {F-n} of self-adjoint operators, living inside a fixed free Wigner chaos of even order, converges in distribution to a centered free Poisson random variable with rate lambda > 0 if and only if phi(F-n(4)) - 2 phi(F-n(3)) -> 2 lambda(2) - lambda (where phi is the relevant tracial state). This extends to a free setting some recent limit theorems by Nourdin and Peccati [Ann. Probab. 37 (2009) 1412-1426] and provides a noncentral counterpart to a result by Kemp et al. [Ann. Probab. 40 (2012) 1577-1635]. As a by-product of our findings, we show that Wigner chaoses of order strictly greater than 2 do not contain nonzero free Poisson random variables. Our techniques involve the so-called Riordan numbers, counting noncrossing partitions without singletons.