BIASED RANDOM WALK IN POSITIVE RANDOM CONDUCTANCES ON Zd

成果类型:
Article
署名作者:
Fribergh, Alexander
署名单位:
Universite Federale Toulouse Midi-Pyrenees (ComUE); Universite de Toulouse; Institut National des Sciences Appliquees de Toulouse; Centre National de la Recherche Scientifique (CNRS); Universite de Toulouse
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/13-AOP835
发表日期:
2013
页码:
3910-3972
关键词:
einstein relation percolation diffusion
摘要:
We study the biased random walk in positive random conductances on Z(d). This walk is transient in the direction of the bias. Our main result is that the random walk is ballistic if, and only if, the conductances have finite mean. Moreover, in the sub-ballistic regime we find the polynomial order of the distance moved by the particle. This extends results obtained by Shen [Ann. Appl. Probab. 12 (2002) 477-510], who proved positivity of the speed in the uniformly elliptic setting.
来源URL: