RANDOM DOUBLY STOCHASTIC MATRICES: THE CIRCULAR LAW
成果类型:
Article
署名作者:
Nguyen, Hoi H.
署名单位:
University System of Ohio; Ohio State University
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/13-AOP877
发表日期:
2014
页码:
1161-1196
关键词:
LITTLEWOOD-OFFORD PROBLEM
permanent estimators
symmetric-matrices
UNIVERSALITY
number
distributions
eigenvalues
statistics
vectors
摘要:
Let X be a matrix sampled uniformly from the set of doubly stochastic matrices of size n x n. We show that the empirical spectral distribution of the normalized matrix root n(X - EX) converges almost surely to the circular law. This confirms a conjecture of Chatterjee, Diaconis and Sly.
来源URL: