A COUNTEREXAMPLE TO THE CANTELLI CONJECTURE THROUGH THE SKOROKHOD EMBEDDING PROBLEM
成果类型:
Article
署名作者:
Kleptsyn, Victor; Kurtzmann, Aline
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Rennes; Universite de Lorraine; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Lorraine; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/14-AOP932
发表日期:
2015
页码:
2250-2281
关键词:
Brownian Motion
stopping times
CONSTRUCTION
EXISTENCE
摘要:
In this paper, we construct a counterexample to a question by Cantelli, asking whether there exists a nonconstant positive measurable function phi such that for i.i.d. r.v. X, Y of law N(0, 1), the r.v. X + phi(X) . Y is also Gaussian. This construction is made by finding an unusual solution to the Skorokhod embedding problem (showing that the corresponding Brownian transport, contrary to the Root barrier, is not unique). To find it, we establish some sufficient conditions for the continuity of the Root barrier function.