GAUSSIAN-TYPE LOWER BOUNDS FOR THE DENSITY OF SOLUTIONS OF SDES DRIVEN BY FRACTIONAL BROWNIAN MOTIONS

成果类型:
Article
署名作者:
Besalu, M.; Kohatsu-Higa, A.; Tindel, S.
署名单位:
Universite de Lorraine; Universite de Lorraine; Ritsumeikan University; Japan Science & Technology Agency (JST)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/14-AOP977
发表日期:
2016
页码:
399-443
关键词:
differential-equations driven stochastic calculus malliavin calculus Respect
摘要:
In this paper we obtain Gaussian-type lower bounds for the density of solutions to stochastic differential equations (SDEs) driven by a fractional Brownian motion with Hurst parameter H. In the one-dimensional case with additive noise, our study encompasses all parameters H is an element of (0, 1), while the multidimensional case is restricted to the case H > 1/2. We rely on a mix of pathwise methods for stochastic differential equations and stochastic analysis tools.