NONINTERSECTING BROWNIAN MOTIONS ON THE UNIT CIRCLE
成果类型:
Article
署名作者:
Liechty, Karl; Wang, Dong
署名单位:
DePaul University; National University of Singapore
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/14-AOP998
发表日期:
2016
页码:
1134-1211
关键词:
gaussian random matrices
large-n limit
external source
schur process
BOUNDARY
UNIVERSALITY
dyson
MODEL
airy
摘要:
We consider an ensemble of n nonintersecting Brownian particles on the unit circle with diffusion parameter n(-1/2), which are conditioned to begin at the same point and to return to that point after time T, but otherwise not to intersect. There is a critical value of T which separates the subcritical case, in which it is vanishingly unlikely that the particles wrap around the circle, and the supercritical case, in which particles may wrap around the circle. In this paper, we show that in the subcritical and critical cases the probability that the total winding number is zero is almost surely 1 as n -> infinity, and in the supercritical case that the distribution of the total winding number converges to the discrete normal distribution. We also give a streamlined approach to identifying the Pearcey and tacnode processes in scaling limits. The formula of the tacnode correlation kernel is new and involves a solution to a Lax system for the Painleve II equation of size 2 x 2. The proofs are based on the determinantal structure of the ensemble, asymptotic results for the related system of discrete Gaussian orthogonal polynomials, and a formulation of the correlation kernel in terms of a double contour integral.