POLY-ADIC FILTRATIONS, STANDARDNESS, COMPLEMENTABILITY AND MAXIMALITY
成果类型:
Article
署名作者:
Leuridan, Christophe
署名单位:
Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/15-AOP1085
发表日期:
2017
页码:
1218-1246
关键词:
摘要:
Given some essentially separable filtration (Zn)(n <= 0) indexed by the non-positive integers, we define the notion of complementability for the filtrations contained in (Zn)(n <= 0). We also define and characterize the notion ofmaximality for the poly-adic sub-filtrations of (Zn)(n <= 0). We show that any poly-adic sub-filtration of (Zn)(n <= 0) which can be complemented by a Kolmogorovian filtration is maximal in (Zn)(n <= 0). We show that the converse is false, and we prove a partial converse, which generalizes Vershik's lacunary isomorphism theorem for poly-adic filtrations.