THE NUMBER OF OPEN PATHS IN ORIENTED PERCOLATION

成果类型:
Article
署名作者:
Garet, Olivier; Gouere, Jean-Baptiste; Marchand, Regine
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Lorraine; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Tours; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Lorraine
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/16-AOP1158
发表日期:
2017
页码:
4071-4100
关键词:
random environment contact process GROWTH
摘要:
We study the number N-n of open paths of length n in supercritical oriented percolation on Z(d) x N, with d >= 1, and we prove the existence of the connective constant for the supercritical oriented percolation cluster: on the percolation event {inf N-n > 0}, N-n(1/n) almost surely converges to a positive deterministic constant. The proof relies on the introduction of adapted sequences of regenerating times, on subadditive arguments and on the properties of the coupled zone in supercritical oriented percolation. This global convergence result can be deepened to give directional limits and can be extended to more general random linear recursion equations known as linear stochastic evolutions.