EDGE- AND VERTEX-REINFORCED RANDOM WALKS WITH SUPER-LINEAR REINFORCEMENT ON INFINITE GRAPHS

成果类型:
Article
署名作者:
Cotar, Codina; Thacker, Debleena
署名单位:
University of London; University College London; Lund University
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/16-AOP1122
发表日期:
2017
页码:
2655-2706
关键词:
phase-transition localization MODEL
摘要:
In this paper, we introduce a new simple but powerful general technique for the study of edge- and vertex-reinforced processes with super-linear reinforcement, based on the use of order statistics for the number of edge, respectively of vertex, traversals. The technique relies on upper bound estimates for the number of edge traversals, proved in a different context by Cotar and Limic [Ann. AppL Probab. 19 (2009) 1972-2007] for finite graphs with edge reinforcement. We apply our new method both to edge- and to vertex-reinforced random walks with super-linear reinforcement on arbitrary infinite connected graphs of bounded degree. We stress that, unlike all previous results for processes with super-linear reinforcement, we make no other assumption on the graphs. For edge-reinforced random walks, we complete the results of Limic and Tures [Ann. Probab. 35 (2007) 1783-1806] and we settle a conjecture of Sellke (1994) by showing that for any reciprocally summable reinforcement weight function w, the walk traverses a random attracting edge at all large times. For vertex-reinforced random walks, we extend results previously obtained on Z by Volkov [Ann. Probab. 29 (2001) 66-91] and by Basdevant, Schapira and Singh [Ann. Probab. 42 (2014) 527-558], and on complete graphs by Benaim, Raimond and Schapira [ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013) 767-782]. We show that on any infinite connected graph of bounded degree, with reinforcement weight function w taken from a general class of reciprocally summable reinforcement weight functions, the walk traverses two random neighbouring attracting vertices at all large times.