THE VACANT SET OF TWO-DIMENSIONAL CRITICAL RANDOM INTERLACEMENT IS INFINITE
成果类型:
Article
署名作者:
Comets, Francis; Popov, Serguei
署名单位:
Universite Paris Cite; Universidade Estadual de Campinas; Universite Paris Cite; Universidade Estadual de Campinas
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/17-AOP1177
发表日期:
2017
页码:
4752-4785
关键词:
inequality
摘要:
For the model of two-dimensional random interlacements in the critical regime (i.e., alpha = 1), we prove that the vacant set is a.s. infinite, thus solving an open problem from [Commun. Math. Phys. 343 (2016) 129-164]. Also, we prove that the entrance measure of simple random walk on annular domains has certain regularity properties; this result is useful when dealing with soft local times for excursion processes.