A GAUSSIAN SMALL DEVIATION INEQUALITY FOR CONVEX FUNCTIONS
成果类型:
Article
署名作者:
Paouris, Grigoris; Valettas, Petros
署名单位:
Texas A&M University System; Texas A&M University College Station; University of Missouri System; University of Missouri Columbia
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/17-AOP1206
发表日期:
2018
页码:
1441-1454
关键词:
brunn-minkowski inequality
Small Ball Probability
dvoretzkys theorem
random version
摘要:
Let Z be an n-dimensional Gaussian vector and let f : R-n -> R be a convex function. We prove that P(f (Z) <= Ef (Z) - t root Var f(Z) <= = exp(-ct(2)), for all t > 1 where c > 0 is an absolute constant. As an application we derive variance-sensitive small ball probabilities for Gaussian processes.