LIMIT THEOREMS FOR MARKOV WALKS CONDITIONED TO STAY POSITIVE UNDER A SPECTRAL GAP ASSUMPTION
成果类型:
Article
署名作者:
Grama, Ion; Lauvergnat, Ronan; Le Page, Emile
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/17-AOP1197
发表日期:
2018
页码:
1807-1877
关键词:
ordered random-walks
affine random-walks
asymptotic-behavior
potential-theory
1st-passage times
conical domains
stable laws
distributions
CONVERGENCE
chains
摘要:
Consider a Markov chain (X-n)(n >= 0) with values in the state space X. Let f be a real function on X and set S-n = Sigma(n)(i=1) f(X-i), n >= 1. Let P-x be the probability measure generated by the Markov chain starting at X-0 = x. For a starting point y is an element of R, denote by tau(y) the first moment when the Markov walk (y + S-n)(n >= 1) becomes nonpositive. Under the condition that S-n has zero drift, we find the asymptotics of the probability P-x (tau(y) > n) and of the conditional law P-x(y + S-n <=.root n vertical bar tau(y) > n) as n -> +infinity.
来源URL: