THE BROWNIAN LIMIT OF SEPARABLE PERMUTATIONS

成果类型:
Article
署名作者:
Bassino, Frederique; Bouvel, Mathilde; Feray, Valentin; Gerin, Lucas; Pierrot, Adeline
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - Institute for Information Sciences & Technologies (INS2I); Universite Paris 13; University of Zurich; Institut Polytechnique de Paris; Ecole Polytechnique; Centre National de la Recherche Scientifique (CNRS); Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/17-AOP1223
发表日期:
2018
页码:
2134-2189
关键词:
pattern-avoiding permutations occurrences number trees
摘要:
We study uniform random permutations in an important class of pattern-avoiding permutations: the separable permutations. We describe the asymptotics of the number of occurrences of any fixed given pattern in such a random permutation in terms of the Brownian excursion. In the recent terminology of permutons, our work can be interpreted as the convergence of uniform random separable permutations towards a Brownian separable permuton.
来源URL: