STEIN KERNELS AND MOMENT MAPS

成果类型:
Article
署名作者:
Fathi, Max
署名单位:
Centre National de la Recherche Scientifique (CNRS); Universite de Toulouse
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/18-AOP1305
发表日期:
2019
页码:
2172-2185
关键词:
brunn-minkowski inequalities transportation
摘要:
We describe a construction of Stein kernels using moment maps, which are solutions to a variant of the Monge-Ampere equation. As a consequence, we show how regularity bounds in certain weighted Sobolev spaces on these maps control the rate of convergence in the classical central limit theorem, and derive new rates in Kantorovitch-Wasserstein distance in the log-concave situation, with explicit polynomial dependence on the dimension.