CAPACITY OF THE RANGE OF RANDOM WALK ON Z4
成果类型:
Article
署名作者:
Asselah, Amine; Schapira, Bruno; Sousi, Perla
署名单位:
Universite Gustave-Eiffel; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris-Est-Creteil-Val-de-Marne (UPEC); Aix-Marseille Universite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); University of Cambridge
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/18-AOP1288
发表日期:
2019
页码:
1447-1497
关键词:
intersection-properties
brownian paths
Invariance
exponents
摘要:
We study the scaling limit of the capacity of the range of a random walk on the integer lattice in dimension four. We establish a strong law of large numbers and a central limit theorem with a non-Gaussian limit. The asymptotic behaviour is analogous to that found by Le Gall in '86 [Comm. Math. Phys. 104 (1986) 471-507] for the volume of the range in dimension two.
来源URL: