SYMMETRIC EXCLUSION AS A RANDOM ENVIRONMENT: INVARIANCE PRINCIPLE
成果类型:
Article
署名作者:
Jara, Milton; Menezes, Otavio
署名单位:
Instituto Nacional de Matematica Pura e Aplicada (IMPA); Universidade de Lisboa
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/20-AOP1466
发表日期:
2020
页码:
3124-3149
关键词:
additive-functionals
equilibrium fluctuations
random-walks
limit
摘要:
We establish an invariance principle for a one-dimensional random walk in a dynamic random environment given by a speed-change exclusion process. The jump probabilities of the walk depend on the configuration of the exclusion in a finite box around the walker. The environment starts from equilibrium. After a suitable space-time rescaling, the random walk converges to a sum of two independent processes: a Brownian motion and a Gaussian process with stationary increments.