COMPARISON THEOREM FOR SOME EXTREMAL EIGENVALUE STATISTICS

成果类型:
Article
署名作者:
Landon, Benjamin; Lopatto, Patrick; Marcinek, Jake
署名单位:
Massachusetts Institute of Technology (MIT); Harvard University
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/20-AOP1439
发表日期:
2020
页码:
2894-2919
关键词:
random matrices universality fixed-energy universality generalized wigner spectral statistics bulk universality
摘要:
We introduce a method for the comparison of some extremal eigenvalue statistics of random matrices. For example, it allows one to compare the maximal eigenvalue gap in the bulk of two generalized Wigner ensembles, provided that the first four moments of their matrix entries match. As an application, we extend results of Ben Arous-Bourgade and Feng-Wei that identify the limit of the maximal eigenvalue gap in the bulk of the GUE to all complex Hermitian generalized Wigner matrices.
来源URL: