SYMMETRIES OF STOCHASTIC COLORED VERTEX MODELS

成果类型:
Article
署名作者:
Galashin, Pavel
署名单位:
University of California System; University of California Los Angeles
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/20-AOP1502
发表日期:
2021
页码:
2175-2219
关键词:
level-spacing distributions flag varieties r-matrix equation
摘要:
We discover a new property of the stochastic colored six-vertex model called flip-invariance. We use it to show that for a given collection of observables of the model, any transformation that preserves the distribution of each individual observable also preserves their joint distribution. This generalizes recent shift-invariance results of Borodin-Gorin-Wheeler. As limiting cases, we obtain similar statements for the Brownian last passage percolation, the Kardar-Parisi-Zhang equation, the Airy sheet and directed polymers. Our proof relies on an equivalence between the stochastic colored six-vertex model and the Yang-Baxter basis of the Hecke algebra. We conclude by discussing the relationship of the model with Kazhdan-Lusztig polynomials and positroid varieties in the Grassmannian.