A PHASE TRANSITION FOR REPEATED AVERAGES
成果类型:
Article
署名作者:
Chatterjee, Sourav; Diaconis, Persi; Sly, Allan; Zhang, Lingfu
署名单位:
Stanford University; Stanford University; Princeton University
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/21-AOP1526
发表日期:
2022
页码:
1-17
关键词:
random-walks
consensus
cycles
摘要:
Let x(1), ..., x(n) be a fixed sequence of real numbers. At each stage, pick two indices I and J uniformly at random, and replace x(I), x(J) by (x(I) +x(J))/2, (x(I) +x(J))/2. Clearly, all the coordinates converge to (x(1)+ ...+ x(n))/n. We determine the rate of convergence, establishing a sharp cutoff transition answering a question of Jean Bourgain.