BALANCED EXCITED RANDOM WALK IN TWO DIMENSIONS
成果类型:
Article
署名作者:
Angel, Omer; Holmes, Mark; Ramirez, Alejandro
署名单位:
University of British Columbia; University of Melbourne; New York University; NYU Shanghai; Pontificia Universidad Catolica de Chile
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/23-AOP1622
发表日期:
2023
页码:
1421-1448
关键词:
摘要:
We give nontrivial upper and lower bounds on the range of the so-called Balanced Excited Random Walk in two dimensions and verify a conjecture of Benjamini, Kozma and Schapira. To the best of our knowledge, these are the first nontrivial results for this two-dimensional model.