BERRY-ESSEEN TYPE BOUNDS FOR THE LEFT RANDOM WALK ON GLd(R) UNDER POLYNOMIAL MOMENT CONDITIONS
成果类型:
Article
署名作者:
Cuny, C.; Dedecker, J.; Merlevede, F.; Peligrad, M.
署名单位:
Universite de Bretagne Occidentale; Universite Paris Cite; Universite Gustave-Eiffel; Universite Paris-Est-Creteil-Val-de-Marne (UPEC); University System of Ohio; University of Cincinnati
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/22-AOP1602
发表日期:
2023
页码:
495-523
关键词:
CENTRAL-LIMIT-THEOREM
CONVERGENCE
inequalities
rates
摘要:
Let A(n) = epsilon(n) center dot center dot center dot epsilon(1), where (epsilon n)n >= 1 is a sequence of independent random matrices, taking values in GL(d)(R), d >= 2, with common distribution mu. In this paper, under standard assumptions on mu (strong irreducibility and prox-imality) we prove Berry-Esseen type theorems for log(||A(n)||) when mu has a polynomial moment. More precisely, we get the rate ((logn)/n)(q/2-1), when mu has a moment of order q is an element of[2, 3] and the rate 1/root n when mu has a moment of order 4, which significantly improves earlier results in this setting.