ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
成果类型:
Article
署名作者:
Cipolloni, Giorgio; Erdos, Laszlo; Schroeder, Dominik; Xu, Yuanyuan
署名单位:
Princeton University; Institute of Science & Technology - Austria; Swiss Federal Institutes of Technology Domain; ETH Zurich
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/23-AOP1643
发表日期:
2023
页码:
2192-2242
关键词:
spectral-radius
circular law
tracy-widom
statistics
UNIVERSALITY
maximum
fluctuations
chaos
摘要:
We establish a precise three-term asymptotic expansion, with an optimal estimate of the error term, for the rightmost eigenvalue of an n x n random matrix with independent identically distributed complex entries as n tends to infinity. All terms in the expansion are universal.
来源URL: