REGULARIZATION BY NOISE FOR ROUGH DIFFERENTIAL EQUATIONS DRIVEN BY GAUSSIAN ROUGH PATHS

成果类型:
Article
署名作者:
Catellier, Remi; Duboscq, Romain
署名单位:
Inria; Centre National de la Recherche Scientifique (CNRS); Universite Cote d'Azur; Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Federale Toulouse Midi-Pyrenees (ComUE); Institut National des Sciences Appliquees de Toulouse; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/24-AOP1701
发表日期:
2025
页码:
79-139
关键词:
multiplicative noise Integrability
摘要:
We consider the rough differential equation with drift driven by a Gaussian geometric rough path. Under natural conditions on the rough path, namely nondeterminism, and uniform ellipticity conditions on the diffusion coefficient, we prove path-by-path well-posedness of the equation for poorly regular drifts. In the case of the fractional Brownian motion B(H )for H > (1) (4), we prove that the drift may be taken to be kappa > 0 H & ouml;lder continuous and bounded for kappa > (3)(2) - (1) (2H) . A flow transform of the equation and Malliavin 1 calculus for Gaussian rough paths are used to achieve such a result.