An evaluation of self-organizing map networks as a robust alternative to factor analysis in data mining applications

成果类型:
Article
署名作者:
Kiang, MY; Kumar, A
署名单位:
California State University System; California State University Long Beach; Arizona State University; Arizona State University-Tempe
刊物名称:
INFORMATION SYSTEMS RESEARCH
ISSN/ISSBN:
1047-7047
DOI:
10.1287/isre.12.2.177.9696
发表日期:
2001
页码:
177-194
关键词:
摘要:
Kohonen's self-organizing map (SOM) network is one of the most important network architectures developed during the 1980s. The main function of SOM networks is to map the input data from an n-dimensional space to a lower dimensional (usually one- or two-dimensional) plot while maintaining the original topological relations. Therefore, it can be viewed as an analog of factor analysis. Ln this research, we evaluate the feasibility of using SOM networks as a robust alternative to factor analysis and clustering for data mining applications. Specifically, we compare SOM network solutions to factor analytic and K-Means clustering solutions on simulated data sets with known underlying factor and cluster structures. The comparisons indicate that the SOM networks provide solutions superior to unrotated factor solutions in general and provide more accurate recovery of underlying cluster structures when the input data are skewed. Our findings suggest that SOM networks can provide robust alternatives to traditional factor analysis and clustering techniques in data mining applications.
来源URL: