Pricing Problems under the Markov Chain Choice Model
成果类型:
Article
署名作者:
Dong, James; Simsek, A. Serdar; Topaloglu, Huseyin
署名单位:
Cornell University; University of Texas System; University of Texas Dallas
刊物名称:
PRODUCTION AND OPERATIONS MANAGEMENT
ISSN/ISSBN:
1059-1478
DOI:
10.1111/poms.12903
发表日期:
2019
页码:
157-175
关键词:
Nested Logit Model
revenue management
technical note
optimization
equilibrium
ASSORTMENT
demand
COMPETITION
inertia
摘要:
We consider pricing problems when customers choose under the Markov chain choice model. In this choice model, a customer arriving into the system is interested in a certain product with a certain probability. Depending on the price charged for this product, the customer decides whether to purchase the product. If the customer purchases the product, then she leaves the system. Otherwise, the customer transitions to another product or to the no purchase option with certain transition probabilities. In this way, the customer transitions between the products until she purchases a product or reaches the no purchase option. We study three fundamental pricing problems under this choice model. First, for the monopolistic pricing problem, we show how to compute the optimal prices efficiently. Second, for the competitive pricing problem, we show that a Nash equilibrium exists, prove that Nash equilibrium prices are no larger than the prices computed by a central planner controlling all prices and characterize a Nash equilibrium that Pareto dominates all other Nash equilibria. Third, for the dynamic pricing problem with a single resource, we show that the optimal prices decrease as we have more resource capacity or as we get closer to the end of the selling horizon. We also consider a deterministic approximation formulated under the assumption that the demand for each product takes on its expected value. Although the objective function and constraints in this approximation do not have explicit expressions, we develop an equivalent reformulation with explicit expressions for the objective function and constraints.