Fixed-Dimensional Stochastic Dynamic Programs: An Approximation Scheme and an Inventory Application
成果类型:
Article
署名作者:
Chen, Wei; Dawande, Milind; Janakiraman, Ganesh
署名单位:
University of Texas System; University of Texas Dallas
刊物名称:
OPERATIONS RESEARCH
ISSN/ISSBN:
0030-364X
DOI:
10.1287/opre.2013.1239
发表日期:
2014
页码:
81-103
关键词:
control-models
lost-sales
convex-functions
algorithms
demand
COSTS
摘要:
We study fixed-dimensional stochastic dynamic programs in a discrete setting over a finite horizon. Under the primary assumption that the cost-to-go functions are discrete L-\tau-convex, we propose a pseudo-polynomial time approximation scheme that solves this problem to within an arbitrary prespecified additive error of epsilon > 0. The proposed approximation algorithm is a generalization of the explicit-enumeration algorithm and offers us full control in the trade-off between accuracy and running time. The main technique we develop for obtaining our scheme is approximation of a fixed-dimensional L-\tau-convex function on a bounded rectangular set, using only a selected number of points in its domain. Furthermore, we prove that the approximation function preserves L-\tau-convexity. Finally, to apply the approximate functions in a dynamic program, we bound the error propagation of the approximation. Our approximation scheme is illustrated on a well-known problem in inventory theory, the single-product problem with lost sales and lead times. We demonstrate the practical value of our scheme by implementing our approximation scheme and the explicit-enumeration algorithm on instances of this inventory problem.