Multistate Bayesian Control Chart Over a Finite Horizon
成果类型:
Article
署名作者:
Wang, Jue; Lee, Chi-Guhn
署名单位:
University of Toronto
刊物名称:
OPERATIONS RESEARCH
ISSN/ISSBN:
0030-364X
DOI:
10.1287/opre.2015.1396
发表日期:
2015
页码:
949-964
关键词:
economic design
markovian deterioration
programming approach
assignable causes
quality-control
optimization
multiplicity
INFORMATION
policies
SUBJECT
摘要:
We study a multistate partially observable process control model with a general state transition structure. The process is initially in control and subject to Markovian deterioration that can bring it to out-of-control states. The process may continue making transitions among the out-of-control states, or even back to the in-control state until it reaches an absorbing state. We assume that at least one out-of-control state is absorbing. The objective is to minimize the expected total cost over a finite horizon. By transforming the standard Cartesian belief space into the spherical coordinate system, we show that the optimal policy has a simple control-limit structure. We also examine two specialized models. The first is the phase-type transition time model, in which we develop an algorithm whose complexity is not affected by the number of phases. The second is a model with multiple absorbing out-of-control states, by which we show that certain out-of-control states may incur less total cost than the in-control state, a phenomenon never occurs in the two-state models. We conclude that there are fundamental differences between multistate models and two-state models, and that the spherical coordinate transformation offers significant analytical and computational benefits.
来源URL: