Cost-Volume Relationship for Flows Through a Disordered Network

成果类型:
Article
署名作者:
Aldous, David J.
署名单位:
University of California System; University of California Berkeley
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.1080.0327
发表日期:
2008
页码:
769-786
关键词:
摘要:
In a network where the cost of flow across an edge is nonlinear in the volume of flow, and where sources and destinations are uniform, one can consider the relationship between total volume of flow through the network and the minimum cost of any flow with given volume. Under a simple probability model (locally tree-like directed network, independent cost-volume functions for different edges) we show how to compute the minimum cost in the infinite-size limit. The argument uses a probabilistic reformulation of the cavity method from statistical physics and is not rigorous as presented here. The methodology seems potentially useful for many problems concerning flows on this class of random networks. Making arguments rigorous is a challenging open problem.