Penalty and Smoothing Methods for Convex Semi-Infinite Programming

成果类型:
Article
署名作者:
Auslender, Alfred; Goberna, Miguel A.; Lopez, Marco A.
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet; Institut Polytechnique de Paris; Ecole Polytechnique; Universitat d'Alacant
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.1080.0362
发表日期:
2009
页码:
303-319
关键词:
min-max problems Entropic Regularization Finite algorithms
摘要:
In this paper we consider min-max convex semi-infinite programming. To solve these problems we introduce a unified framework concerning Remez-type algorithms and integral methods coupled with penalty and smoothing methods. This framework subsumes well-known classical algorithms, but also provides some new methods with interesting properties. Convergence of the primal and dual sequences are proved under minimal assumptions.