Minimal Valid Inequalities for Integer Constraints

成果类型:
Article
署名作者:
Borozan, Valentin; Cornuejols, Gerard
署名单位:
Aix-Marseille Universite; Carnegie Mellon University
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.1080.0370
发表日期:
2009
页码:
538-546
关键词:
摘要:
In this paper, we consider a semi-infinite relaxation of mixed-integer linear programs. We show that minimal valid inequalities for this relaxation correspond to maximal lattice-free convex sets, and that they arise from nonnegative, piecewise linear, positively homogeneous, convex functions.
来源URL: