On Solving Large-Scale Polynomial Convex Problems by Randomized First-Order Algorithms
成果类型:
Article
署名作者:
Ben-Tal, Aharon; Nemirovski, Arkadi
署名单位:
Technion Israel Institute of Technology; University System of Georgia; Georgia Institute of Technology
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.2014.0681
发表日期:
2015
页码:
474-494
关键词:
prox-method
摘要:
One of the most attractive recent approaches to processing well-structured large-scale convex optimization problems is based on smooth convex-concave saddle point reformulation of the problem of interest and solving the resulting problem by a fast first order saddle point method utilizing smoothness of the saddle point cost function. In this paper, we demonstrate that when the saddle point cost function is polynomial, the precise gradients of the cost function required by deterministic first order saddle point algorithms and becoming prohibitively computationally expensive in the extremely large-scale case, can be replaced with incomparably cheaper computationally unbiased random estimates of the gradients. We show that for large-scale problems with favorable geometry, this randomization accelerates, progressively as the sizes of the problem grow, the solution process. This extends significantly previous results on acceleration by randomization, which, to the best of our knowledge, dealt solely with bilinear saddle point problems. We illustrate our theoretical findings by instructive and encouraging numerical experiments.
来源URL: