A Fair Policy for the G/GI/N Queue with Multiple Server Pools
成果类型:
Article
署名作者:
Reed, Josh; Shaki, Yair
署名单位:
New York University; Technion Israel Institute of Technology
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.2014.0685
发表日期:
2015
页码:
558-595
关键词:
traffic limit-theorem
Service Systems
fluid
approximations
networks
time
摘要:
We consider the G / GI / N queue with multiple server pools, each possessing a pool-specific service time distribution. The class of nonidling routing policies that we consider are referred to as u-greedy policies. These policies route incoming customers to the server pool with the longest weighted cumulative idle time to equitably spread incoming work amongst the server pools in the system. Our first set of results demonstrates that asymptotically in the Halfin-Whitt regime and under any u-greedy policy, the diffusion scaled cumulative idle time processes of each of the server pools are held in fixed proportion to one another. We next provide a heavy traffic limit theorem for the process keeping track of the total number of customers in the system. Our limit may be characterized as the solution to a stochastic convolution equation that is driven by a Gaussian process. To prove our main results, we introduce a new methodology for studying the G / GI / N queue in the Halfin-Whitt regime that has as its starting point a simple conservation of flow identity.
来源URL: