Bayesian Switching Multiple Disorder Problems

成果类型:
Article
署名作者:
Gapeev, Pavel V.
署名单位:
University of London; London School Economics & Political Science
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.2015.0770
发表日期:
2016
页码:
1108-1124
关键词:
exponential penalty quickest detection markov-chain games
摘要:
The switching multiple disorder problem seeks to determine an ordered infinite sequence of times of alarms which are as close as possible to the unknown times of disorders, or change-points, at which the observable process changes its probability characteristics. We study a Bayesian formulation of this problem for an observable Brownian motion with switching constant drift rates. The method of proof is based on the reduction of the initial problem to an associated optimal switching problem for a three-dimensional diffusion posterior probability process and the analysis of the equivalent coupled parabolic-type free-boundary problem. We derive analytic-form estimates for the Bayesian risk function and the optimal switching boundaries for the components of the the posterior probability process.