Quantifying Double McCormick
成果类型:
Article
署名作者:
Speakman, Emily; Lee, Jon
署名单位:
University of Michigan System; University of Michigan
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.2017.0846
发表日期:
2017
页码:
1230-1253
关键词:
global optimization
Convex envelope
bounds
摘要:
When using the standard McCormick inequalities twice to convexify trilinear monomials, as is often the practice in modeling and software, there is a choice of which variables to group first. For the important case in which the domain is a nonnegative box, we calculate the volume of the resulting relaxation, as a function of the bounds defining the box. In this manner, we precisely quantify the strength of the different possible relaxations defined by all three groupings, in addition to the trilinear hull itself. As a by-product, we characterize the best double-McCormick relaxation. We wish to emphasize that, in the context of spatial branch and bound for factorable formulations, our results do not only apply to variables in the input formulation. Our results apply to monomials that involve auxiliary variables as well. So, our results apply to the product of any three (possibly complicated) expressions in a formulation.
来源URL: