Fair Cake Division Under Monotone Likelihood Ratios

成果类型:
Article; Early Access
署名作者:
Barman, Siddharth; Rathi, Nidhi
署名单位:
Indian Institute of Science (IISC) - Bangalore; Indian Institute of Science (IISC) - Bangalore
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.2021.1192
发表日期:
2021
关键词:
cut
摘要:
This work develops algorithmic results for the classic cake-cutting problem in which a divisible, heterogeneous resource (modeled as a cake) needs to be partitioned among agents with distinct preferences. We focus on a standard formulation of cake cutting wherein each agent must receive a contiguous piece of the cake. Although multiple hardness results exist in this setup for finding fair/efficient cake divisions, we show that, if the value densities of the agents satisfy the monotone likelihood ratio property (MLRP), then strong algorithmic results hold for various notions of fairness and economic efficiency. Addressing cake-cutting instances with MLRP, first we develop an algorithm that finds cake divisions (with connected pieces) that are envy free, up to an arbitrary precision. The time complexity of our algorithm is polynomial in the number of agents and the bit complexity of an underlying Lipschitz constant. We obtain similar positive results for maximizing social, egalitarian, and Nash social welfare. Many distribution families bear MLRP. In particular, this property holds if all the value densities belong to any one of the following families: Gaussian (with the same variance), linear, Poisson, and exponential distributions, linear translations of any log-concave function. Hence, through MLRP, the current work obtains novel cake-cutting algorithms for multiple distribution families.