Generalization Bounds in the Predict-Then-Optimize Framework

成果类型:
Article
署名作者:
El Balghiti, Othman; Elmachtoub, Adam N.; Grigas, Paul; Tewari, Ambuj
署名单位:
Columbia University; University of California System; University of California Berkeley; University of Michigan System; University of Michigan
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.2022.1330
发表日期:
2023
页码:
2043-2065
关键词:
generalization error smart predict
摘要:
The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters in contrast to the prediction error of the parameters. This loss function is referred to as the smart predict then-optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out of sample in the context of the SPO loss. Because the SPO loss is nonconvex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.