Load Balancing Under Strict Compatibility Constraints
成果类型:
Article
署名作者:
Rutten, Daan; Mukherjeea, Debankur
署名单位:
University System of Georgia; Georgia Institute of Technology
刊物名称:
MATHEMATICS OF OPERATIONS RESEARCH
ISSN/ISSBN:
0364-765X
DOI:
10.1287/moor.2022.1258
发表日期:
2023
页码:
227-256
关键词:
scale heterogeneous systems
Throughput
STABILITY
CHOICE
QUEUE
摘要:
Consider a system with N identical single-server queues and a number of task types, where each server is able to process only a small subset of possible task types. Arriving tasks select d >= 2 random compatible servers and join the shortest queue among them. The compatibility constraints are captured by a fixed bipartite graph between the servers and the task types. When the graph is complete bipartite, the mean-field approximation is accurate. However, such dense compatibility graphs are infeasible for large-scale implementation. We characterize a class of sparse compatibility graphs for which the mean-field approximation remains valid. For this, we introduce a novel notion, called proportional sparsity, and establish that systems with proportionally sparse compatibility graphs asymptotically match the performance of a fully flexible system. Furthermore, we show that proportionally sparse random compatibility graphs can be constructed, which reduce the server degree almost by a factor N/ln (N) compared with the complete bipartite compatibility graph.
来源URL: