A Statistical Learning Approach to Personalization in Revenue Management
成果类型:
Article
署名作者:
Chen, Xi; Owen, Zachary; Pixton, Clark; Simchi-Levi, David
署名单位:
New York University; Brigham Young University; Massachusetts Institute of Technology (MIT); Massachusetts Institute of Technology (MIT)
刊物名称:
MANAGEMENT SCIENCE
ISSN/ISSBN:
0025-1909
DOI:
10.1287/mnsc.2020.3772
发表日期:
2022
页码:
1923-1937
关键词:
assortment optimization
PERSONALIZATION
price discrimination
Statistical learning
摘要:
We consider a logit model-based framework for modeling joint pricing and assortment decisions that take into account customer features. This model provides a significant advantage when one has insufficient data for any one customer and wishes to generalize learning about one customer's preferences to the population. Under this model, we study the statistical learning task of model fitting from a static store of precollected customer data. This setting, in contrast to the popular learning and earning paradigm, represents the situation many business teams encounter in which their data collection abilities have outstripped their data analysis capabilities. In this learning setting, we establish finite-sample convergence guarantees on the model parameters. The parameter convergence guarantees are then extended to out-of-sample performance guarantees in terms of revenue, in the form of a high-probability bound on the gap between the expected revenue of the best action taken under the estimated parameters and the revenue generated by a decision maker with full knowledge of the choice model. We further discuss practical implications of these bounds. We demonstrate the personalization approach using ticket purchase data from an airline carrier.