Learning in a Post-Truth World
成果类型:
Article
署名作者:
Mostagir, Mohamed; Siderius, James
署名单位:
University of Michigan System; University of Michigan; Massachusetts Institute of Technology (MIT)
刊物名称:
MANAGEMENT SCIENCE
ISSN/ISSBN:
0025-1909
DOI:
10.1287/mnsc.2022.4340
发表日期:
2022
页码:
2860-2868
关键词:
approval
unless otherwise noted
For more information
contact permissions@informs
org
摘要:
Misinformation has emerged as a major societal challenge in the wake of the 2016 U.S. elections, Brexit, and the COVID-19 pandemic. One of the most active areas of inquiry into misinformation examines how the cognitive sophistication of people impacts their ability to fall for misleading content. In this paper, we capture sophistication by studying how misinformation affects the two canonical models of the social learning literature: sophisticated (Bayesian) and naive (DeGroot) learning. We show that sophisticated agents can be more likely to fall for misinformation. Our model helps explain several experimental and empirical facts from cognitive science, psychology, and the social sciences. It also shows that the intuitions developed in a vast social learning literature should be approached with caution when making policy decisions in the presence of misinformation. We conclude by discussing the relationship between misinformation and increased partisanship and provide an example of how our model can inform the actions of policymakers trying to contain the spread of misinformation.