A limited memory steepest descent method
成果类型:
Article
署名作者:
Fletcher, Roger
署名单位:
University of Dundee
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-011-0479-6
发表日期:
2012
页码:
413-436
关键词:
quasi-newton matrices
barzilai
摘要:
The possibilities inherent in steepest descent methods have been considerably amplified by the introduction of the Barzilai-Borwein choice of step-size, and other related ideas. These methods have proved to be competitive with conjugate gradient methods for the minimization of large dimension unconstrained minimization problems. This paper suggests a method which is able to take advantage of the availability of a few additional 'long' vectors of storage to achieve a significant improvement in performance, both for quadratic and non-quadratic objective functions. It makes use of certain Ritz values related to the Lanczos process (Lanczos in J Res Nat Bur Stand 45:255-282, 1950). Some underlying theory is provided, and numerical evidence is set out showing that the new method provides a competitive and more simple alternative to the state of the art l-BFGS limited memory method.