Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression

成果类型:
Article
署名作者:
Lu, Zhaosong; Monteiro, Renato D. C.; Yuan, Ming
署名单位:
Simon Fraser University; University System of Georgia; Georgia Institute of Technology
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-010-0350-1
发表日期:
2012
页码:
163-194
关键词:
摘要:
In this paper, we study convex optimization methods for computing the nuclear (or, trace) norm regularized least squares estimate in multivariate linear regression. The so-called factor estimation and selection method, recently proposed by Yuan et al. (J Royal Stat Soc Ser B (Statistical Methodology) 69(3):329-346, 2007) conducts parameter estimation and factor selection simultaneously and have been shown to enjoy nice properties in both large and finite samples. To compute the estimates, however, can be very challenging in practice because of the high dimensionality and the nuclear norm constraint. In this paper, we explore a variant due to Tseng of Nesterov's smooth method and interior point methods for computing the penalized least squares estimate. The performance of these methods is then compared using a set of randomly generated instances. We show that the variant of Nesterov's smooth method generally outperforms the interior point method implemented in SDPT3 version 4.0 (beta) (Toh et al. On the implementation and usage of sdpt3-a matlab software package for semidefinite-quadratic-linear programming, version 4.0. Manuscript, Department of Mathematics, National University of Singapore (2006)) substantially. Moreover, the former method is much more memory efficient.