An introduction to a class of matrix cone programming
成果类型:
Article
署名作者:
Ding, Chao; Sun, Defeng; Toh, Kim-Chuan
署名单位:
Chinese Academy of Sciences; National University of Singapore; National University of Singapore
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-012-0619-7
发表日期:
2014
页码:
141-179
关键词:
semidefinite
eigenvalues
POLYNOMIALS
摘要:
In this paper, we define a class of linear conic programming (which we call matrix cone programming or MCP) involving the epigraphs of five commonly used matrix norms and the well studied symmetric cone. MCP has recently been found to have many important applications, for example, in nuclear norm relaxations of affine rank minimization problems. In order to make the defined MCP tractable and meaningful, we must first understand the structure of these epigraphs. So far, only the epigraph of the Frobenius matrix norm, which can be regarded as a second order cone, has been well studied. Here, we take an initial step to study several important properties, including its closed form solution, calm Bouligand-differentiability and strong semismoothness, of the metric projection operator over the epigraph of the , spectral or operator, and nuclear matrix norm, respectively. These properties make it possible to apply augmented Lagrangian methods, which have recently received a great deal of interests due to their high efficiency in solving large scale semidefinite programming, to this class of MCP problems. The work done in this paper is far from comprehensive. Rather it is intended as a starting point to call for more insightful research on MCP so that it can serve as a basic tool to solve more challenging convex matrix optimization problems in years to come.