Approximation bounds for sparse principal component analysis

成果类型:
Article
署名作者:
d'Aspremont, Alexandre; Bach, Francis; El Ghaoui, Laurent
署名单位:
Universite PSL; Ecole Normale Superieure (ENS); Centre National de la Recherche Scientifique (CNRS); Centre National de la Recherche Scientifique (CNRS); CNRS - Institute for Information Sciences & Technologies (INS2I); Universite PSL; Ecole Normale Superieure (ENS); Inria; University of California System; University of California Berkeley
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-014-0751-7
发表日期:
2014
页码:
89-110
关键词:
摘要:
We produce approximation bounds on a semidefinite programming relaxation for sparse principal component analysis. The sparse maximum eigenvalue problem cannot be efficiently approximated up to a constant approximation ratio, so our bounds depend on the optimum value of the semidefinite relaxation: the higher this value, the better the approximation. In particular, these bounds allow us to control approximation ratios for tractable statistics in hypothesis testing problems where data points are sampled from Gaussian models with a single sparse leading component.