First-order methods of smooth convex optimization with inexact oracle

成果类型:
Article
署名作者:
Devolder, Olivier; Glineur, Francois; Nesterov, Yurii
署名单位:
Universite Catholique Louvain
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-013-0677-5
发表日期:
2014
页码:
37-75
关键词:
proximal bundle method
摘要:
We introduce the notion of inexact first-order oracle and analyze the behavior of several first-order methods of smooth convex optimization used with such an oracle. This notion of inexact oracle naturally appears in the context of smoothing techniques, Moreau-Yosida regularization, Augmented Lagrangians and many other situations. We derive complexity estimates for primal, dual and fast gradient methods, and study in particular their dependence on the accuracy of the oracle and the desired accuracy of the objective function. We observe that the superiority of fast gradient methods over the classical ones is no longer absolute when an inexact oracle is used. We prove that, contrary to simple gradient schemes, fast gradient methods must necessarily suffer from error accumulation. Finally, we show that the notion of inexact oracle allows the application of first-order methods of smooth convex optimization to solve non-smooth or weakly smooth convex problems.