Phase recovery, MaxCut and complex semidefinite programming

成果类型:
Article
署名作者:
Waldspurger, Irene; d'Aspremont, Alexandre; Mallat, Stephane
署名单位:
Universite PSL; Ecole Normale Superieure (ENS); Universite PSL; Ecole Normale Superieure (ENS); Centre National de la Recherche Scientifique (CNRS); Universite PSL; Ecole Normale Superieure (ENS); Centre National de la Recherche Scientifique (CNRS); CNRS - Institute for Information Sciences & Technologies (INS2I)
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-013-0738-9
发表日期:
2015
页码:
47-81
关键词:
quadratic optimization Approximation algorithms maximum cut relaxation retrieval
摘要:
Phase retrieval seeks to recover a signal from the amplitude of linear measurements . We cast the phase retrieval problem as a non-convex quadratic program over a complex phase vector and formulate a tractable relaxation (called PhaseCut) similar to the classical MaxCut semidefinite program. We solve this problem using a provably convergent block coordinate descent algorithm whose structure is similar to that of the original greedy algorithm in Gerchberg and Saxton (Optik 35:237-246, 1972), where each iteration is a matrix vector product. Numerical results show the performance of this approach over three different phase retrieval problems, in comparison with greedy phase retrieval algorithms and matrix completion formulations.