A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions
成果类型:
Article
署名作者:
Li, Xudong; Sun, Defeng; Toh, Kim-Chuan
署名单位:
National University of Singapore; National University of Singapore
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-014-0850-5
发表日期:
2016
页码:
333-373
关键词:
alternating direction method
matrix completion
low-rank
algorithm
SYSTEM
sdp
摘要:
This paper is devoted to the design of an efficient and convergent semi-proximal alternating direction method of multipliers (ADMM) for finding a solution of low to medium accuracy to convex quadratic conic programming and related problems. For this class of problems, the convergent two block semi-proximal ADMM can be employed to solve their primal form in a straightforward way. However, it is known that it is more efficient to apply the directly extended multi-block semi-proximal ADMM, though its convergence is not guaranteed, to the dual form of these problems. Naturally, one may ask the following question: can one construct a convergent multi-block semi-proximal ADMM that is more efficient than the directly extended semi-proximal ADMM? Indeed, for linear conic programming with 4-block constraints this has been shown to be achievable in a recent paper by Sun et al. (2014, arXiv: 1404.5378). Inspired by the aforementioned work and with the convex quadratic conic programming in mind, we propose a Schur complement based convergent semi-proximal ADMM for solving convex programming problems, with a coupling linear equality constraint, whose objective function is the sum of two proper closed convex functions plus an arbitrary number of convex quadratic or linear functions. Our convergent semi-proximal ADMM is particularly suitable for solving convex quadratic semidefinite programming (QSDP) with constraints consisting of linear equalities, a positive semidefinite cone and a simple convex polyhedral set. The efficiency of our proposed algorithm is demonstrated by numerical experiments on various examples including QSDP.