Newton's method may fail to recognize proximity to optimal points in constrained optimization

成果类型:
Article
署名作者:
Andreani, R.; Martinez, J. M.; Santos, L. T.
署名单位:
Universidade Estadual de Campinas
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-016-0994-6
发表日期:
2016
页码:
547-555
关键词:
sqp
摘要:
We will show examples in which the primal sequence generated by the Newton-Lagrange method converges to a strict local minimizer of a constrained optimization problem but the gradient of the Lagrangian does not tend to zero, independently of the choice of the dual sequence.